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Introduction

Background

Grid applications:
Energy arbitrage
Balancing service
Capacity value
Distribution system upgrade deferral
Outage mitigation

Customer-side applications:
Energy charge reduction
Demand charge reduction
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Introduction

Motivation

Optimal control is desired in order to best utilize the limited
power and energy capacity of BSS
Look-ahead optimization is required to capture interdependent
operation over time
Fixed power rating and constant round-trip or one-way
efficiencies are used in existing optimal scheduling methods

I inaccurate economic assessment results
I infeasible operating schedule
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Optimal charging control using linear and nonlinear models

Optimal scheduling with linear battery model

P1 : max
pk,pbatt

k
,sk,∆sk

K∑
k=1

λkpk

subject to:
Charging/discharging limit: −p−

max ≤ pk ≤ p+
max, ∀k = 1 , · · · ,K

Rate change of energy in batt.: pbatt
k =

{
pk/η

+ if pk ≥ 0
pkη

− if pk < 0
, ∀k = 1 , · · · ,K

SOC change: ∆sk = pbatt
k ∆T/Emax, ∀k = 1 , · · · ,K

Dynamics of SOC: sk = sk−1 −∆sk, ∀k = 1 , · · · ,K
SOC limits: Sk ≤ sk ≤ Sk, ∀k = 1 , · · · ,K
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Optimal charging control using linear and nonlinear models

Limitations with existing linear battery model

[−pmin, pmax]: incapable to model varying charging/discharging
range
Emax: inaccurate to represent energy capacity
η+, η+: difficult to estimate overall efficiency and inaccurate to
capture actual losses
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Optimal charging control using linear and nonlinear models

Varying power capability and SOC change rate
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Optimal charging control using linear and nonlinear models

Varying power capability and SOC change rate (cont.)
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Optimal charging control using linear and nonlinear models

Optimal scheduling with nonlinear battery model

P2 : max
pk,sk,∆sk

K∑
k=1

λkpk

subject to:
Charging/discharging limit: pk ∈ Psk

, ∀k = 1 , · · · ,K
SOC change: ∆sk = f(pk, sk), ∀k = 1 , · · · ,K

Dynamics of SOC: sk = sk−1 −∆sk, ∀k = 1 , · · · ,K
SOC limits: Sk ≤ sk ≤ Sk, ∀k = 1 , · · · ,K

Di Wu (PNNL) Nonlinear Battery Model October 12, 2017 9 / 15



Case study

Assumptions and inputs

BSS: 1 MW/3.2 MWh vanadium redox BSS at Turner
substation in Pullman in Washington State.
Applications: energy arbitrage and energy imbalance reduction
Price: The Mid-Columbia prices from 2011 to 2015
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Case study

Economic performance comparison results
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Case study

Varying round-trip efficiency

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SOC

R
T

E

η(s) = rch(s)
rdisch(s)

Di Wu (PNNL) Nonlinear Battery Model October 12, 2017 12 / 15



Case study

BSS power and SOC
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Fig. 5. Charging/discharging operation and SOC in sample days.

of 60% underestimates the efficiency of BSS for many
possible operation and leaves BSS as standby for many
time period when arbitrage could be profitable.

To better see this, energy prices, charging/discharging
operation, and SOC from both methods are plotted for
two days of 2015 in Fig. 5. The hours at the beginning
and end of the sample period are corresponding to very
high and low prices, respectively. Both methods gener-
ate similar battery discharging and charging operation at
the beginning and end of the sample period, because
the price difference is big enough compared with RTE
and energy arbitrage using BSS is profitable. However,
existing method P1 outputs some infeasible operation.
For example, the BSS is discharged at 2 MW from 7 to
9 a.m. and the SOC decreases from 100% to 20%. In
fact, the BSS can only be discharged at this full power
output within a very limited SOC range. For the other
hours, existing method P1 leaves BSS as standby most of
the time, because using a constant RTE of 60%, price
difference is not big enough to recover 40% losses in
energy arbitrage. On the other hand, the proposed method
P2 with nonlinear model is capable to accurately explore
the BSS operating space at different operating power and
SOC, takes into account the varying losses, finds profitable

operation, and operates BSS at higher efficiency region to
maximize the benefits from energy arbitrage.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel nonlinear battery model and
optimal control for evaluation and operational scheduling
of BSS. Compared with existing methods, the proposed
method can better capture varying charging/discharging
efficiency and charging/discharging power capability, and
therefore can generate more realistic and optimal operation
of BSS for grid applications. The case study using a
commercial BSS shows that being incapable of incorpo-
rating accurate nonlinear models in optimal scheduling
could results in significant errors in benefits assessment,
and even infeasible operation in operational planning. In
future work, we plan to apply the proposed method with
nonlinear BSS model for other grid applications, and
evaluate the benefits.
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Conclusion and future work

Conclusion and future work

Conclusion:
Nonlinear BSS model better captures varying charging/discharging power
capability and efficiencies.
Optimal scheduling without accurate nonlinear BSS model could result in
significant errors in benefits assessment, and even infeasible operation.

Future work:
Apply the proposed method with nonlinear model for other grid and/or
customer-side applications.
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Q & A

Thank you! Questions?

Di Wu
di.wu@pnnl.gov
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